Membrane-associated sickle hemoglobin: a major determinant of sickle erythrocyte rigidity.

نویسندگان

  • E A Evans
  • N Mohandas
چکیده

Micropipette aspiration tests on single erythrocytes have previously shown that the static rigidity (membrane shear modulus) of oxygenated sickle cells increased with increasing hemoglobin concentration, whereas the rigidity of normal cells was independent of hemoglobin concentration. Moreover, it was observed that after mechanical extension, sickle cells exhibited persistent deformation more frequently and to a greater extent than normal cells. To ascertain if differences in association of normal and sickle hemoglobin with the membrane could account for these observations, we measured rheologic properties of normal membranes reconstituted with sickle hemoglobin and sickle membranes reconstituted with normal hemoglobin. The static rigidity of normal ghosts reloaded with sickle hemoglobin was higher than those of either normal ghosts reloaded with normal hemoglobin or native normal cells. On the other hand, the increased rigidity of native sickle cells decreased to near-normal values following reconstitution with normal hemoglobin. Furthermore, we observed that normal ghosts reconstituted with sickle hemoglobin exhibited persistent bumps after mechanical extension, but no bumps formed on normal ghosts reconstituted with normal hemoglobin. Moreover residual bumps were not produced on sickle cells reloaded with normal hemoglobin. Since mechanical characteristics peculiar to sickle cells could be induced in normal cells by incorporation of sickle hemoglobin, and since normal characteristics could be restored to sickle cells by incorporation of normal hemoglobin, we suggest that the interaction of sickle hemoglobin with the cell membrane is responsible for augmented static rigidity of oxygenated sickle erythrocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oral magnesium supplements reduce erythrocyte dehydration in patients with sickle cell disease.

Intracellular polymerization and sickling depend markedly on the cellular concentration of sickle hemoglobin (Hb S). A possible therapeutic strategy for sickle cell disease is based on reducing the cellular concentration of Hb S through prevention of erythrocyte dehydration. The K-Cl cotransporter is a major determinant of sickle cell dehydration and is inhibited by increasing erythrocyte Mg co...

متن کامل

Static and dynamic rigidities of normal and sickle erythrocytes. Major influence of cell hemoglobin concentration.

Static and dynamic deformabilities of erythrocytes are important determinants of microcirculatory blood flow. To determine the influence of increased cellular hemoglobin concentration on these properties, we quantitated static and dynamic deformabilities of isolated subpopulations of oxygenated normal and sickle erythrocytes with defined cell densities using micromechanical manipulations of ind...

متن کامل

Irreversible deformation of the spectrin-actin lattice in irreversibly sickled cells.

Irreversibly sickled cells (ISC's) are circulating erythrocytes in patients with sickle cell disease that retain a sickled shape even when oxygenated. Evidence points to a membrane defect that prevents the return of these cells to the normal biconcave shape. The erythrocyte membrane protein spectrin is believed to help control erythrocyte shape and deformability. Recent studies suggest that nor...

متن کامل

Heinz bodies induce clustering of band 3, glycophorin, and ankyrin in sickle cell erythrocytes.

In earlier model studies we demonstrated that artificially denatured hemoglobin binds to and clusters the protein, band 3, in the plane of the erythrocyte membrane. To determine whether denatured hemoglobin also clusters band 3 in vivo, we have compared the locations of denatured hemoglobin aggregates (Heinz bodies) with band 3 in sickle cells using phase contrast and immunofluorescence microsc...

متن کامل

Mechanical properties of sickle cell membranes.

The mechanical properties of sickle erythrocyte membranes were evaluated in the ektacytometer. When ghosts from the total red blood cell population were examined, the rigidity of the resealed ghosts and their rate of fragmentation by shear stress (t1/2) were normal. However, fractionation on Stractan density gradients revealed that sickle cells were heterogenous in their membrane mechanical pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 70 5  شماره 

صفحات  -

تاریخ انتشار 1987